
 
 

 
 
 
 
 
 
 
 
 
 
 

Algorithmic Distortion of Video Files 

on the Per-pixel Scale 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Justin Trupiano 

University of Colorado 
June 2020  

 
 



 
 

Random Guess. This algorithm starts with a completely randomized image. Each of the 
307,200 pixels (640x480) in the image is assigned a random color value–three numbers, 
representing the RGB channels, between 0 and 255. For each frame of the video, all of the pixels 
from the randomly generated image are checked against the corresponding pixel of the original 
video. If the difference between the two values is within a range specified by the dist variable, 
that value is left unaltered. For example, if the randomly assigned value is 127 and the original 
pixel value is 120, that pixel is left unchanged. If the difference between the two values is greater 
than the dist value, the randomly assigned value is again randomized with a number between 0 
and 255. The less movement from frame to frame of the original video, the higher the chance 
that this randomization process will result in the correct values for a given pixel. This results in 
an emergent image where the video is relatively consistent, and chaos where changes from frame 
to frame are most drastic. 
 
The included video uses a dist value of 10. This was determined a good balance between the two 
extremes. Higher values of dist result in unchanging randomly generated images as values more 
distant from the original video pixels would be determined ‘correct.’ Lower values of dist result 
in ever-changing randomly generated static images. For example, a dist value of 0 would require 
the randomly generated pixel to exactly match the original video, a 1 in 16777216 chance 
(16777216 or 2563 is the number of possible unique colors in 24-bit color space). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

 

void randomGuess() 
{ 
  loadPixels(); 
  for (int y = 0; y < height; y++) { 
 
      int loc = x + y*width; 
 
      float tR = red(testImage[loc]); 
      float tG = green(testImage[loc]); 
      float tB = blue(testImage[loc]); 
 
      float mR = red(originalImage[loc]); 
      float mG = green(originalImage[loc]); 
      float mB = blue(originalImage[loc]); 
 
 
      float rDist = abs(mR - tR); 
      float gDist = abs(mG - tG); 
      float bDist = abs(mB - tB); 
 
      float dist = 10; 
      float r = 0; 
      float g = 0; 
      float b = 0; 
 
      if (rDist > dist) 
        r = random(255); 
 
      if (gDist > dist) 
        g = random(255); 
 
      if (bDist > dist) 
        b = random(255); 
 
      testImage[loc] += color(r,g,b); 
 
      originalImage[loc] = testImage[loc]; 
  } 
  updatePixels(); 
} 

 
  
  



 
 

Move Toward Color. This algorithm starts with a completely randomized image. Each of the 
307,200 pixels (640x480) in the image is assigned a random color value–three numbers, 
representing the RGB channels, between 0 and 255. For each frame of the video, all of the pixels 
from the randomly generated image are checked against the corresponding pixel of the original 
video. If the two values are equal, that value is left unaltered. If the two values are not equal, the 
random value is adjusted in the direction of the original video. For example, if the random value 
is 127 and the value from the original video is 200, the random value will be increased. The 
amount by which it is increased is determined by the step variable. Step represents a percentage 
of the difference between the two numbers. If step is 0.01, the incorrect value will move toward 
the correct value by 1% of the total difference. If step is 1.0 the value will be adjusted toward the 
correct value by 100%. 
 
The included videos represent a range of step values between 0.001 and 0.75. The lower the step 
value the longer it takes for pixels to match the original video, resulting in a ‘burn-in’ effect, as 
the original video continues to change the lower step value doesn’t allow enough time for the 
algorithmically generated images to catch up. The larger the step value the faster individual 
pixels match the corresponding pixels, resulting in a slight stutter effect as the algorithmically 
generated image is only a few frames behind the original. 
 
Below is a still from moveTowardColor_0_025.mov. This version uses a step value of 0.025 and 
shows an interesting mix of the described phenomena. The step value is low enough to see the 
‘burn-in’ effect, but still fast enough to show the movement of the original video. 
 
 
  



 
 

 

void moveTowardColor(float step) 
{ 
  loadPixels(); 
  for (int y = 0; y < height; y++) { 
 
      int loc = x + y*width; 
 
      float tR = red(testImage[loc]); 
      float tG = green(testImage[loc]); 
      float tB = blue(testImage[loc]); 
 
      float mR = red(pixels[loc]); 
      float mG = green(pixels[loc]); 
      float mB = blue(pixels[loc]); 
 
      if (tR != mR) 
        tR += (mR - tR) * step; 
 
      if (tG != mG) 
        tG += (mG - tG) * step; 
 
      if (tB != mB) 
        tB += (mB - tB) * step; 
 
      testImage[loc] = color(tR, tG, tB); 
 
      pixels[loc] = testImage[loc]; 
  } 
  updatePixels(); 
} 

 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Randomize Additive Pixels. This algorithm takes three numbers as input, one for each color 
channel (RGB). These numbers can range from 0-255. Every frame, each pixel in the original 
image is increased by a random number between 0 and the specified number. The included 
videos represent a range of possible value combinations for each channel in steps of 0, 127, and 
255. 
 
The first image below is taken from the video where Red and Blue are set to 127 while Green is 
set to 0. This means that in each frame, every pixel gets a random value between 0 and 127 
added to its Red and Blue channels, while there is no change to its Green channel. This results in 
a purple hue to the overall image as the Red and Blue channels are being increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

The larger the number the more distortion of that channel. For example, the following example 
uses the values R0 G127 B127, randomly increasing the Green and Blue channels. In some 
places, this acts to highlight the Red channel, even though the Red values are left unaltered. This 
is because color values cannot be greater than 255, so if a value exceeds 255 it overflows to 0. In 
the case of the image below, the pixels which are close to white (~R255, ~G255, ~B255) have a 
chance of overflowing in the Green and Blue channels, resulting in low values for Green and 
Blue and high values in the Red channel (~R255, ~G0, ~B0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

void randomizeAdditivePixels(int rAmount, int gAmount, int bAmount) 
{ 
  loadPixels(); 
  for (int y = 0; y < height; y++) { 
      int loc = x + y*width; 
 
      float r = red(pixels[loc]); 
      float g = green(pixels[loc]); 
      float b = blue(pixels[loc]); 
 
      r = random(rAmount); 
      g = random(gAmount); 
      b = random(bAmount); 
 
      pixels[loc] += color(r,g,b); 
  } 
  updatePixels(); 
} 

 
 


